Product Description

 A BB electric motor 230/380 AC Voltage and CE Certification

Large quantity in stock, Customization ,fast delivery. Low price

The company provides various motors that comply with IEC standards, which can meet the needs of different industries, Its products include standard motors, variable frequency motors, marine motors, explosion-proof motors, flue gas motors Multi speed motor, brake motor, outdoor motor, non-sparking motor, aluminum shell motor, grinding head Motor. And we can provide special motors designed according to customer requirements, all designs can achieve The strict requirements of the customer. At the same time, the company can provide different insulation levels and can fully Various motors with different voltage and frequency requirements. The company’s main OEM customers are air conditioners Fans, port machinery and cranes, pumps, reducers, machine tools, textile machinery, glass machines Leading enterprises in industries such as machinery, marine, power plant auxiliary equipment, and circuit board machinery. Project coverage:Power plants, pulp and paper making, petrochemicals, metallurgy, ships, ports, buildings, cement, airports, etc.

Product Paramenters

Specification:

Brand Name

WEG

Model Number

M2BAX LE W20 W21 W22

Type

AC Motor

Frequency

50Hz/60Hz

Output Power

0.18kw-315kw

Phase

Three-phase

Certification

CE, CCC, ISO9001

Rated voltage

380V

Efficiency

IE1,IE2,IE3

Series

Y2 Series Motor

Frame

Cast Iron or Aluminum

Poles

2, 4, 6, 8,10

Ambient temperature

-15° ºC ≤0 ≤ 40 ºC

Altitude

1000 CHINAMFG

Duty

Continuous(S1)

Insulation Class

Class B/F

Protection Class

IP44/IP54/IP55

Cooling Method

IC0141 (total-enclosed fan-cooled type)

Price

USD

Minimum Order Quantity

20 Piece/Pieces, USD

Packaging Details

Foam,carton and plywood . We can pack according to your requirement .

Delivery Time

15-25 days after received the payment

Payment Terms

L/C,T/T

Supply Ability

10,000 Piece/Pieces per Month

Materials

cast iron(63-355), aluminum (FRAME 63-160)

Mounting types

IMB3, IMB5,IMB35

Connection

“Y” type for 3kW and downwards, “D” type for 3kW and upwards

Relative humidity

not higher than 90%

Special motors can be designed according to customers’ requirements

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 58/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

3 phase motor

How do 3-phase motors differ from single-phase motors?

3-phase motors and single-phase motors differ in several aspects, including their power supply, construction, performance characteristics, and applications. Here’s a detailed explanation of the differences between 3-phase motors and single-phase motors:

  • Power Supply: The primary difference between 3-phase motors and single-phase motors is their power supply. 3-phase motors require a three-phase power supply, which consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. In contrast, single-phase motors operate on a single-phase power supply, which consists of a single AC voltage waveform.
  • Construction: The construction of 3-phase motors and single-phase motors also differs. 3-phase motors have three sets of windings evenly spaced around the motor’s stator, whereas single-phase motors typically have only one set of windings. The multiple windings in 3-phase motors enable the creation of a rotating magnetic field, which is essential for their operation.
  • Starting Mechanism: 3-phase motors and single-phase motors have different starting mechanisms. 3-phase motors can start on their own with a simple direct-on-line (DOL) starting method, where the motor is connected directly to the power supply. In contrast, single-phase motors require additional starting mechanisms, such as capacitors or centrifugal switches, to overcome the need for a rotating magnetic field during startup.
  • Starting Torque: 3-phase motors tend to have higher starting torque compared to single-phase motors. The balanced three-phase power supply and the design of 3-phase motors allow them to produce a strong rotating magnetic field, enabling efficient starting and acceleration. Single-phase motors, on the other hand, often experience lower starting torque due to the absence of a rotating magnetic field during startup.
  • Efficiency: In terms of efficiency, 3-phase motors are generally more efficient than single-phase motors. The balanced three-phase power supply and the design of 3-phase motors result in smoother operation and reduced losses compared to single-phase motors. This higher efficiency translates to better performance and energy savings in applications where 3-phase motors are utilized.
  • Power Rating: 3-phase motors are commonly available in higher power ratings compared to single-phase motors. The ability of 3-phase motors to deliver higher power output makes them suitable for applications that require greater torque and horsepower, such as heavy-duty industrial machinery and equipment. Single-phase motors are typically used in lower power applications, such as household appliances and small tools.
  • Applications: The applications of 3-phase motors and single-phase motors also differ. 3-phase motors are widely used in industrial and commercial applications, including pumps, compressors, HVAC systems, electric vehicles, and robotics. Single-phase motors are commonly found in residential and small-scale applications, such as household appliances (e.g., refrigerators, air conditioners, and washing machines) and small tools (e.g., fans and power tools).

These are the key differences between 3-phase motors and single-phase motors. While 3-phase motors offer advantages in terms of efficiency, starting torque, and power rating, single-phase motors are suitable for smaller-scale applications and residential use. The selection of the motor type depends on the specific requirements of the application and the availability of the appropriate power supply.

3 phase motor

Can 3-phase motors be adapted for use in both small and large-scale applications?

Yes, 3-phase motors are highly adaptable and can be used in both small and large-scale applications. Here’s a detailed explanation of their adaptability:

  • Small-Scale Applications: 3-phase motors are available in a wide range of sizes and power ratings, making them suitable for small-scale applications. These motors can be found in various small industrial machines, appliances, and equipment. They are commonly used in small pumps, compressors, fans, conveyors, blowers, and other devices requiring reliable and efficient motor operation.
  • Large-Scale Applications: 3-phase motors are also well-suited for large-scale applications that demand high power and torque. They can be found in heavy-duty industrial machinery and equipment used in manufacturing plants, mining operations, oil refineries, and other industrial sectors. Large-scale applications of 3-phase motors include motor-driven compressors, generators, crushers, mills, conveyor systems, and large HVAC (heating, ventilation, and air conditioning) units.
  • Flexibility in Voltage and Frequency: 3-phase motors can operate with different voltage and frequency configurations, allowing for adaptation to various power systems worldwide. They can be designed and configured to accommodate specific voltage and frequency requirements, making them compatible with the electrical infrastructure of different regions and countries. This flexibility in voltage and frequency makes 3-phase motors suitable for both small and large-scale applications globally.
  • Motor Control Options: 3-phase motors can be coupled with various control devices and technologies to adapt to different application requirements. For small-scale applications, simple motor starters or contactors can provide basic control functionality. In contrast, large-scale applications often utilize more advanced control systems, such as variable frequency drives (VFDs) or adjustable speed drives (ASDs), which offer precise speed and torque control. These control options allow 3-phase motors to meet the specific needs of both small and large-scale applications.
  • Application-Specific Designs: Manufacturers offer a wide range of 3-phase motor designs and configurations to cater to different application requirements. Motors can be customized to meet specific performance criteria, environmental conditions, and industry standards. This adaptability allows 3-phase motors to be optimized for both small and large-scale applications, ensuring optimal efficiency, reliability, and performance.

Overall, the adaptability of 3-phase motors makes them suitable for a wide range of applications, from small-scale to large-scale. Their availability in various sizes, flexibility in voltage and frequency, compatibility with different control options, and ability to be customized for specific applications make them a versatile choice for different industrial needs. Whether it’s powering small machines or driving heavy-duty equipment, 3-phase motors can be adapted to meet the requirements of both small and large-scale applications.

3 phase motor

How do 3-phase motors handle variations in load and speed requirements?

3-phase motors are capable of handling variations in load and speed requirements through various control methods. Here’s a detailed explanation of how they handle these variations:

  • Load Variations:
    • Inherent Torque Characteristics: 3-phase motors are designed to provide high starting torque and continuous torque output, making them suitable for a wide range of load variations. They can handle sudden changes in load without significant impact on motor performance.
    • Overload Capacity: 3-phase motors are typically designed with overload capacity to handle temporary increases in load beyond their rated capacity. This overload capacity allows the motor to withstand sudden surges in load without overheating or tripping protective devices.
    • Controlled Speed Regulation: By using control devices such as variable frequency drives (VFDs) or adjustable speed drives (ASDs), the speed and torque output of 3-phase motors can be adjusted in real-time to match the load requirements. This ensures efficient motor operation and minimizes energy wastage.
    • Motor Protection Features: 3-phase motors often incorporate protective features such as thermal overload protection and current limiters. These features help safeguard the motor against excessive heat or current, which can result from prolonged high-load conditions. They automatically intervene to protect the motor and prevent damage.
  • Speed Variations:
    • Variable Frequency Drives (VFDs): 3-phase motors can be coupled with VFDs, which allow precise control of motor speed. VFDs adjust the frequency and voltage supplied to the motor, enabling smooth and accurate speed regulation over a wide range. This flexibility in speed control makes 3-phase motors suitable for applications with varying speed requirements.
    • Adjustable Speed Drives (ASDs): Similar to VFDs, ASDs provide speed control capabilities for 3-phase motors. They allow users to adjust the motor’s speed and torque output based on specific application needs. ASDs can be used in various industrial processes that require precise speed control, such as conveyor systems, pumps, and fans.
    • Pole Changing Motors: Some 3-phase motors, known as pole changing motors, offer the ability to change the number of poles within the motor. This feature allows for speed variations by altering the motor’s synchronous speed. However, pole changing motors are less common compared to VFD or ASD-controlled motors.

Overall, 3-phase motors can handle variations in load and speed requirements through their inherent torque characteristics, overload capacity, and control options such as VFDs and ASDs. These features and control methods allow for efficient motor operation, precise speed regulation, and the ability to adapt to changing load conditions in various industrial applications.

China high quality Efficiency Three Phase Synchronous Reluctance Motor System a Bb Explosion Proof Motor   vacuum pump acChina high quality Efficiency Three Phase Synchronous Reluctance Motor System a Bb Explosion Proof Motor   vacuum pump ac
editor by CX 2024-05-14