Product Description

Product Name:
380V 400V 3KV 6KV 10KV Three Phase AC Asynchronous  YR YRKK YRKS Slip Ring Induction Motor

Product Range:

Single Phase Induction Motor 0.12kw~7.5kw
Three Phase Induction Motor 0.37kw~6300kw
Slip Ring Induction Motor 4kw~6300kw
Explosion Proof Motor 0.25kw~1600kw
Brake Motor 0.12kw~200kw
DC Motor 1kw~1500kw

Why did you choose to cooperate with Langrui Motor?
1. Langrui is a professional electric motor manufacturer, with more than 50 years of technical experience;
2. We are good at customizing various special motors according to customer needs;
3. Strictly control the quality standard of raw materials to ensure that raw materials comply with national quality standards and requirements;
4. The production process of the company strictly follows the requirements of ISO 9001 quality management system;
5. Each motor is tested before it is delivered to the customer;
6. Langrui for every customer to provide perfect pre-sale and after-sales service system.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Slip Ring Motor
Rotor Structure: Wound Rotor Motor
Casing Protection: Closed Type
Samples:
US$ 480/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

How do 3-phase motors differ from single-phase motors?

3-phase motors and single-phase motors differ in several aspects, including their power supply, construction, performance characteristics, and applications. Here’s a detailed explanation of the differences between 3-phase motors and single-phase motors:

  • Power Supply: The primary difference between 3-phase motors and single-phase motors is their power supply. 3-phase motors require a three-phase power supply, which consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. In contrast, single-phase motors operate on a single-phase power supply, which consists of a single AC voltage waveform.
  • Construction: The construction of 3-phase motors and single-phase motors also differs. 3-phase motors have three sets of windings evenly spaced around the motor’s stator, whereas single-phase motors typically have only one set of windings. The multiple windings in 3-phase motors enable the creation of a rotating magnetic field, which is essential for their operation.
  • Starting Mechanism: 3-phase motors and single-phase motors have different starting mechanisms. 3-phase motors can start on their own with a simple direct-on-line (DOL) starting method, where the motor is connected directly to the power supply. In contrast, single-phase motors require additional starting mechanisms, such as capacitors or centrifugal switches, to overcome the need for a rotating magnetic field during startup.
  • Starting Torque: 3-phase motors tend to have higher starting torque compared to single-phase motors. The balanced three-phase power supply and the design of 3-phase motors allow them to produce a strong rotating magnetic field, enabling efficient starting and acceleration. Single-phase motors, on the other hand, often experience lower starting torque due to the absence of a rotating magnetic field during startup.
  • Efficiency: In terms of efficiency, 3-phase motors are generally more efficient than single-phase motors. The balanced three-phase power supply and the design of 3-phase motors result in smoother operation and reduced losses compared to single-phase motors. This higher efficiency translates to better performance and energy savings in applications where 3-phase motors are utilized.
  • Power Rating: 3-phase motors are commonly available in higher power ratings compared to single-phase motors. The ability of 3-phase motors to deliver higher power output makes them suitable for applications that require greater torque and horsepower, such as heavy-duty industrial machinery and equipment. Single-phase motors are typically used in lower power applications, such as household appliances and small tools.
  • Applications: The applications of 3-phase motors and single-phase motors also differ. 3-phase motors are widely used in industrial and commercial applications, including pumps, compressors, HVAC systems, electric vehicles, and robotics. Single-phase motors are commonly found in residential and small-scale applications, such as household appliances (e.g., refrigerators, air conditioners, and washing machines) and small tools (e.g., fans and power tools).

These are the key differences between 3-phase motors and single-phase motors. While 3-phase motors offer advantages in terms of efficiency, starting torque, and power rating, single-phase motors are suitable for smaller-scale applications and residential use. The selection of the motor type depends on the specific requirements of the application and the availability of the appropriate power supply.

3 phase motor

What factors should be considered when selecting a 3-phase motor for an application?

When selecting a 3-phase motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed explanation of the key factors to consider:

  • Power Requirements: The power requirements of the application should be carefully evaluated. Determine the required horsepower (HP) or kilowatt (kW) rating of the motor based on the load characteristics, such as the torque and speed requirements. Consider both the continuous power requirements and any intermittent or peak power demands that the motor may experience during operation.
  • Voltage and Frequency: Verify the available voltage and frequency of the power supply in the application. Ensure that the motor’s voltage and frequency ratings match the power supply to ensure compatibility and safe operation. Common voltage ratings for 3-phase motors include 208V, 230V, 460V, and 575V, while frequencies are typically 50Hz or 60Hz.
  • Motor Speed: Determine the required speed of the motor for the application. Depending on the specific requirements, you may need a motor with a fixed speed, multiple speed options, or variable speed capabilities. Consider the motor’s synchronous speed, which is determined by the number of poles and the power supply frequency, and ensure it aligns with the desired operating speed.
  • Motor Enclosure: The motor enclosure should be selected based on the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, corrosive substances, and the presence of flammable or explosive materials. Common motor enclosures include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures.
  • Efficiency: Energy efficiency is an important consideration to minimize operating costs and environmental impact. Look for motors that meet or exceed applicable efficiency standards, such as the NEMA Premium efficiency standards in the United States or the IE efficiency classes defined by the International Electrotechnical Commission (IEC).
  • Motor Size and Mounting: Consider the physical size and mounting requirements of the motor, ensuring it fits within the available space and can be securely mounted. Check the motor’s frame size, which indicates the physical dimensions and mounting compatibility, such as NEMA frame sizes in the United States or IEC frame sizes internationally.
  • Starting Method: Evaluate the starting requirements of the application. Depending on the load characteristics and the power supply capacity, you may need a motor with specific starting methods, such as direct-on-line (DOL) starting, reduced voltage starting (e.g., star-delta or autotransformer starting), or electronic soft starters. Consider the starting torque and current requirements to ensure successful motor startup.
  • Overload Protection: Determine the type of overload protection required for the motor. Overload protection devices, such as thermal overload relays or electronic motor protection relays, help prevent motor damage due to excessive heat or current overload. Select an appropriate overload protection device based on the motor’s power rating and the specific application requirements.
  • Reliability and Serviceability: Consider the reliability and serviceability aspects of the motor. Look for motors from reputable manufacturers with a track record of producing reliable products. Evaluate the availability of spare parts, technical support, and service centers for maintenance and repairs. Additionally, consider factors such as motor lifespan, bearing design, and ease of access for maintenance tasks.
  • Compliance and Certifications: Ensure that the selected motor complies with relevant industry standards and certifications, such as NEMA, IEC, UL (Underwriters Laboratories), CSA (Canadian Standards Association), or specific industry requirements. Compliance with these standards ensures that the motor meets safety, performance, and quality standards.

Considering these factors when selecting a 3-phase motor helps ensure that the motor is well-suited for the application, delivers optimal performance, and operates reliably and efficiently over its lifespan.

3 phase motor

Can 3-phase motors be integrated with advanced control systems and automation?

Yes, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies. Here’s a detailed explanation of their compatibility and integration capabilities:

  • Variable Frequency Drives (VFDs):
    • 3-phase motors can be coupled with VFDs, which are advanced control devices that provide precise control over motor speed and torque. VFDs convert the incoming AC power into DC and then generate variable voltage and frequency outputs to the motor. This allows for smooth and accurate speed regulation, making 3-phase motors suitable for applications requiring speed control, such as conveyor systems, pumps, and fans.
    • VFDs can be integrated into automation systems through various communication protocols such as Modbus, Profibus, or Ethernet. This enables real-time monitoring, control, and coordination of motor performance within the overall automation network.
  • Programmable Logic Controllers (PLCs):
    • 3-phase motors can be integrated with PLCs, which are industrial digital computers used for automation and control purposes. PLCs can be programmed to monitor and control the operation of 3-phase motors based on specific conditions, inputs, and logic sequences.
    • PLCs can receive feedback signals from sensors or other devices to monitor motor performance, temperature, vibration, and other relevant parameters. Based on this feedback, the PLC can initiate control actions or activate protective functions to ensure optimal motor operation.
    • Integration with PLCs allows for centralized control, data logging, and the ability to interface with other automation devices and systems. This facilitates seamless integration of 3-phase motors into larger automated processes or production lines.
  • Industrial Communication Protocols:
    • 3-phase motors can be integrated into advanced control systems using various industrial communication protocols, such as Modbus, Profibus, DeviceNet, EtherCAT, or Profinet. These protocols enable data exchange and communication between the motor and other devices or systems within the automation network.
    • By utilizing these communication protocols, 3-phase motors can provide real-time feedback on parameters such as motor speed, torque, temperature, and operating conditions. This data can be used for condition monitoring, predictive maintenance, and optimization of motor performance.
    • Integration with industrial communication protocols allows for seamless connectivity, interoperability, and coordination between 3-phase motors and other automation components, such as sensors, actuators, HMIs (Human-Machine Interfaces), and supervisory control systems.
  • Remote Monitoring and Control:
    • The integration of 3-phase motors with advanced control systems and automation technologies enables remote monitoring and control capabilities. Motor parameters and performance data can be accessed and monitored from a central control room or through web-based interfaces.
    • Remote monitoring allows for real-time status updates, fault diagnostics, and performance optimization of 3-phase motors. It enables proactive maintenance and troubleshooting, leading to increased uptime and improved efficiency.
    • Advanced control systems and automation technologies also facilitate remote control of 3-phase motors, allowing operators or system administrators to adjust motor settings, initiate start/stop commands, or modify control parameters from a centralized location.

Overall, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies, such as VFDs, PLCs, industrial communication protocols, and remote monitoring/control capabilities. This integration enables precise control, real-time monitoring, and coordination of motor performance within automated processes and systems, leading to enhanced efficiency, productivity, and flexibility in industrial applications.

China Good quality 380V 400V 3kv 6kv 10kv Three Phase AC Asynchronous YR YRKK YRKS Slip Ring Induction Motor   vacuum pump and compressor	China Good quality 380V 400V 3kv 6kv 10kv Three Phase AC Asynchronous YR YRKK YRKS Slip Ring Induction Motor   vacuum pump and compressor
editor by CX 2024-04-17