Product Description

Structure and working principle of servo motor:

Servo motor is 1 of the commonly used motor,it is a motor that absolutely obeys the command of the control signal.Before the control signal is sent, the rotor is stationary;when the control signal is sent,the rotor rotates immediately;when the control signal disappears, the rotor can stop immediately.


As a special type of motor,synchronous servo motor is different from most other motors,it is designed for precise positioning,rather than speed controlling.






Since the development of AC servo technology in the early 1980s,the technology has become increasingly mature and the performance has been continuously improved.Now it has been widely used in CNC machine tools, printing and packaging machinery,textile machinery,automatic production lines and other fields.


SG Series AC servo is a new generation of AC servo driver independently developed by our company. It mainly uses the latest 32-bit DSP as the core remote computing unit, and adopts complex programmable device EPLD and CHINAMFG intelligent power module.It has a series advantages such as high integration,small size,fast response,perfect protection, and high reliability.


Using temperature:-10ºC-55ºC

Humidity:less than 90%(No condensation)

Vibration:less than 0.5g(4.9m/s2)

Working duty:continuously


Technical parameter:

Model SG200 Series
Input power supply Single phase or 3 phase,AC220v(-15%-20%,50/60Hz) Three phase, AC220v(-15%-20%,50/60Hz)
Use environment Temperature Using:0°C-55°C;Storage:-20°C-80°C
  Humidity Below 90%(no condensation)
Control mode Position control;Speed control;Torque control;Jog control
Regenerative braking Built-in
Control characteristics Speed frequency response <400Hz
  Speed fluctuation rate <±0.03(load 0-100);<±0.02(power -15%-10%),the value corresponds to the rated speed
  Pulse frequency ≤500kHz
Control Input servo enable; alarm clear; ccw drive prohibited; cw drive prohibited; Deviation counter clearing/speed selection 1/zero speed clamping; Command pulse prohibited/speed selection 2
Control output servo is ready to output; servo alarm output; position finish output/speed arrive output ;mechanical brake output
Position Control Input method pulse+symbol; ccw pulse/cw pulse; 2phase A/B quadrature pulses
  Electronic gear 1-32767/1-32767
  Feedback pulse 2500lines/rotation
Protection function Overspeed, overvoltage and undervoltage of main power supply, overcurrent, overload, braking abnormality, encoder abnormality, control power abnormality, position out-of-tolerance, etc
Monitoring function Speed, current position, command pulse accumulation, position deviation, motor torque, motor current, linear speed, rotor absolute position, command pulse frequency, operation status, input and output terminal signal, etc



Model M Series
Input power supply Single phase or 3 phase 220VAC Three phase 220VAC
Control mode Single phase or 3 phase full wave rectification/PWM control sine wave drive mode
Encoder feedback 2500 lines incremental encoder,17bit,23bit absolute encoder
Pulse signal input Direction+pulse;A/B phase orthogonal pulse;CW/CCW pulse
  Differential input:500Kpps
  Open collector input:200Kpps
Digital input 8-channel digital input,which can allocate and change signals
Analog input 2-channel analog input function
Communication interface RS-232:applicable servo driver debugging;RS-485:applicable for customer on-site networking communication
Control mode Position control;speed control;torque control;position/speed control;speed/torque control;position/torque control
Basic performance Response band width:3KHz
  Speed adjust range:1-8000rpm
  Troque control accuraccy:±2%
  Speed variation rate:≤0.5%
  Soft start time setting:0-60S
Built-in function Motor load inertia identification function,vibration suppression function,feedforward compensation function,various PID control strategies
  Overtravel prevention function,emergency parking brake in case of overtravel
  Electronic gear ratio function:electronic gear ratio can be set arbitrarily
  16 stage position control function,16 stage speed control function,interrupted fixed length function
Protection function Over voltage, over current, overload,overspeed,under voltage,overheating,encoder failure,power phase loss,abnormal regenerative braking,fan failure,etc
Use environment Temperature Using:0°C-45°C;Storage:-20°C-85°C
  Humidity Below 90%(no condensation)
  Protection IP20
  Altitude Below 1000m
  Vibration Below 4.9m/s2

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Number of Poles: 4


induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Where can individuals or businesses find reliable information on selecting, installing, and maintaining AC motors?

When seeking information on selecting, installing, and maintaining AC motors, individuals and businesses can refer to various reliable sources. These sources provide valuable guidance, recommendations, and best practices related to AC motors. Here are some places where one can find reliable information:

  • Manufacturer’s Documentation: AC motor manufacturers often provide detailed documentation, including product catalogs, technical specifications, installation guides, and maintenance manuals. These documents offer specific information about their motors, such as performance characteristics, electrical requirements, mounting instructions, and recommended maintenance procedures. Manufacturers’ websites are a common source for accessing these resources.
  • Industry Associations: Industry associations related to electrical engineering, motor manufacturing, or specific applications (e.g., HVAC, pumps, or industrial machinery) can be excellent resources for reliable information. These associations often publish technical articles, guidelines, and standards that cover a wide range of topics, including motor selection, installation practices, efficiency standards, and maintenance recommendations. Examples of such associations include the National Electrical Manufacturers Association (NEMA), the Institute of Electrical and Electronics Engineers (IEEE), and the Air Conditioning, Heating, and Refrigeration Institute (AHRI).
  • Professional Electricians and Engineers: Consulting with professional electricians or electrical engineers who specialize in motor applications can provide valuable insights. These professionals possess practical knowledge and experience in selecting, installing, and maintaining AC motors. They can offer personalized advice based on specific project requirements and industry best practices.
  • Energy Efficiency Programs and Agencies: Energy efficiency programs and agencies, such as government departments, utility companies, or environmental organizations, often provide resources and guidance on energy-efficient motor selection and operation. These programs may offer information on motor efficiency standards, rebate programs for high-efficiency motors, and energy-saving practices. Examples include the U.S. Department of Energy (DOE) and its Energy Star program.
  • Online Technical Forums and Communities: Online forums and communities focused on electrical engineering, motor applications, or specific industries can be valuable sources of information. Participating in these forums allows individuals and businesses to interact with experts, discuss motor-related topics, and seek advice from professionals and enthusiasts who have firsthand experience with AC motors.
  • Books and Publications: Books and technical publications dedicated to electrical engineering, motor technology, or specific applications can provide comprehensive information on AC motors. These resources cover topics ranging from motor theory and design principles to practical installation techniques and maintenance procedures. Libraries, bookstores, and online retailers offer a wide selection of relevant publications.

When accessing information from these sources, it is important to ensure that the information is up-to-date, reliable, and relevant to the specific application or requirements. Consulting multiple sources and cross-referencing information can help verify accuracy and establish a well-rounded understanding of AC motor selection, installation, and maintenance.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China Custom Silinman 130st-M10025 2.6kw 10nm 2500rpm 220V AC Servo Motor   vacuum pump booster	China Custom Silinman 130st-M10025 2.6kw 10nm 2500rpm 220V AC Servo Motor   vacuum pump booster
editor by CX 2024-05-17